問題 | Chen et al.(2007) に関する以下の課題について、第3回(4/24)の授業までに自分なりの解答を用意してくること。 なお、「(★レポート)」がついた課題については、A4サイズ縦で横書き1ページ以内に解答をまとめて、PDFファイル(推奨)またはWordファイルの形式で、受付期間中にイントラネットを通じて必ず提出すること。 【問題1】 (★レポート) "§3 Liquidity Effects on Yield Spread Levels" の小節 "A. Regression Tests of Liquidity Estimates and Other Yield Spread Determinants" の最初に出てくる重回帰モデル(P.131)について、以下の点を説明せよ。 (1)この重回帰モデルによる分析を通じて、どんなことが分かると期待されるか? 分析の目的を考えて説明せよ。 (2)日本市場の社債のスプレッド分析をこのモデルで行う場合に、各説明変数および被説明変数について「定義を修正する必要性の有無」「データの入手先」「データの加工法」などを調査・検討し、特に注意を要するものについていくつか説明せよ。 (3)"§4 Liquidity Effects on the Yield Spread Changes" の小節 "A. Regression Tests of Changes in Liquidity and Yield Spread Determinants" の最初に出てくる重回帰モデル(P.142)は、P.131のモデルと本質的にどのような点が異なっているのか、目的の違いがはっきりするように説明せよ。 【問題2】 "Appendix: The Return Generating Function" の議論を自分なりに整理・再構築して、真の債券リターンが数式(1)のような2ファクターモデルで与えるのが妥当であることを説明せよ。 (この考え方に、個人的に同意するしないとは別に、論文著者たちの考え方を読み取って、もっと分かりやすい説明を試みよ、ということ) なお、"state price density process" という概念の理解が必要になる。"state price" という概念自体は、本多先生の「ファイナンス理論の基礎」受講していれば、触れられた概念だと思われる。 知らない人でも"state price density" あるいは「状態価格密度」といったキーワードで調べてみてほしい ただし、Appendixの議論のポイントをきちんと読み解くためには、例えば Duffie, Dynamic Asset Pricing Theory, 3rd.ed. Princeton Univ. Pr. (2001) (http://www.amazon.co.jp/dp/069109022X ) の Chap.6 §D に書かれているような議論を参考にする必要があるだろう。 あとは、確率微分方程式の時間微分の項とブラウン運動による確率微分の項の数学的性質や伊藤の公式などの確率解析の基本的知識が必要になる。 上記の知識がないと、全体を通じては理解するのは大変だと思うが、部分的に理解できるところはあると思われる。 何が理解できて、何が理解できない、かを整理するということも非常に大切なこと。 |
---|---|
受付開始日時 | 2012-04-17 21:30:00 |
受付終了日時 | 2012-04-24 12:00:00 |
2012年4月17日火曜日
ファイナンシャル・リスク・マネジメント【第3回に向けての課題】
2012年4月11日水曜日
4/17(火) 「フィナンシャル・リスク・マネジメント」第2回:Chen et al.(2007) #1
第2回と第3回では、
Chen, L., D. A. Lesmond, and J. Wei, “Corporate yield spreads and bond liquidity,”
The Journal of Finance, 62, 119-149 (2007)
を扱います。
------------------------------------------------------
Chen et al.(2007) に関する以下の課題について、
第2回(4/17)の授業までに自分なりの解答を用意してくること。
なお、「(★レポート)」がついた課題については、A4サイズ縦で横書き1ページ以内に解答をまとめて、PDFファイル(推奨)またはWordファイルの形式で、受付期間中にイントラネットを通じて必ず提出すること。
【問題1】 (★レポート) §1 Liquidity Measures の2番目のパラグラフ(P.122の下段)に、
"The LOT measure is a comprehensive estimate of liquidity ..."
というセンテンスがある。
この "LOT measure" とは具体的にどのような流動性リスクの尺度であるかを、自分の表現で分かりやすくまとめて説明せよ。
※該当部分の翻訳や単なる数式の羅列の説明を要求しているわけではない。
【問題2】 この論文では流動性リスク尺度として、上記のLOTの他に Bid-Ask Spread, Percentage Zeros が分析のために導入されている。この3つ以外に、(対象資産を問わず)流動性リスク尺度として定義されているものや、流動性リスクの代理変数として用いられているものを他の文献(日本語のものも含めて)調べて挙げてみよ。
【問題3】 数式番号(4) は、LOTモデルにおける対数尤度関数であると説明されている。このモデルにおける尤度の意味を考えたうえで、 数式番号(4) で表された対数尤度関数の導出過程を説明せよ。
Chen, L., D. A. Lesmond, and J. Wei, “Corporate yield spreads and bond liquidity,”
The Journal of Finance, 62, 119-149 (2007)
を扱います。
第2回では、同論文の§1 の部分を中心に、以下の予習課題の3つの問いに関連して
- LOTモデルの全容の理解
- そもそも流動性リスクをどうとらえるとよいか
- 対数尤度関数の導出過程の理解
といった内容を中心に、学生の皆さんとのQ&A、ディスカッション、私からの解説を行いたいと思います。
第3回では、同論文の§2~§4で提示されている重回帰モデルのいくつか、およびAppendix の the unobserved "true" bond return のモデルの根拠づけ、を主たる題材にしようと思っています。
------------------------------------------------------
Chen et al.(2007) に関する以下の課題について、
第2回(4/17)の授業までに自分なりの解答を用意してくること。
なお、「(★レポート)」がついた課題については、A4サイズ縦で横書き1ページ以内に解答をまとめて、PDFファイル(推奨)またはWordファイルの形式で、受付期間中にイントラネットを通じて必ず提出すること。
【問題1】 (★レポート) §1 Liquidity Measures の2番目のパラグラフ(P.122の下段)に、
"The LOT measure is a comprehensive estimate of liquidity ..."
というセンテンスがある。
この "LOT measure" とは具体的にどのような流動性リスクの尺度であるかを、自分の表現で分かりやすくまとめて説明せよ。
※該当部分の翻訳や単なる数式の羅列の説明を要求しているわけではない。
【問題2】 この論文では流動性リスク尺度として、上記のLOTの他に Bid-Ask Spread, Percentage Zeros が分析のために導入されている。この3つ以外に、(対象資産を問わず)流動性リスク尺度として定義されているものや、流動性リスクの代理変数として用いられているものを他の文献(日本語のものも含めて)調べて挙げてみよ。
【問題3】 数式番号(4) は、LOTモデルにおける対数尤度関数であると説明されている。このモデルにおける尤度の意味を考えたうえで、 数式番号(4) で表された対数尤度関数の導出過程を説明せよ。
2012年4月10日火曜日
FRM 第1回フォロー
授業でも触れたように、今学期は授業フォロー等の情報は イントラネットに集約していこうと思います。
第2回目に向けた課題(レポート問題含む)および第1回授業のフォローコメントをFS-授業資料2012のレポートおよび掲示板にアップしてありますので、そちらを確認してください。
第2回目に向けた課題(レポート問題含む)および第1回授業のフォローコメントをFS-授業資料2012のレポートおよび掲示板にアップしてありますので、そちらを確認してください。
2012年4月5日木曜日
書籍紹介:Model Risk
授業で扱う予定はありませんが、FRM受講者向けに以下の書籍を紹介しておきます。
ICS図書室にもリクエストしてあります(まだ一橋大学図書室HERMESの検索では出てきません)。
Massimo Morini,
Understanding and Managing Model Risk: A Practical Guide for Quants, Traders and Validators,
The Wiley Finance Series (2011)

「モデルリスク」というとかなり限定的な話題のように思えますが、実際にはファイナンスの広範なモデルを取り上げられており、モデルリスクというものが、いろいろなところでいろいろな形で浮かび上がっている状況に気づかされます。
3章の途中までざっと読みましたが、ファイナンスのモデルの特徴と限界について、最近の金融危機をふまえつつ、実データや簡単な例をもって明らかにしていき、適正でないモデルを使うことの危険性と対処法についても言及しています。また、そうした議論を通じてファイナンスの知識やリスク概念を整理するという形式がところどころで使われており、ファイナンス理論のサブテキストとしても使えると思います。
ただし、入門書としては使いにくいと思われます。他のファイナンスやリスク計量のテキストを勉強したことがあれば、違った角度でファイナンス理論やリスクマネジメント理論を眺めることができて、きわめて有用だと思います。
※個人的に、このテキストの私的勉強会に何回か参加させていただく予定ですので、そこで得た知見なども授業でお伝えできるかもしれません。
4/10(火) 「フィナンシャル・リスク・マネジメント」第1回:Guidance & Introduction
第1回目は、これからの講義内容についての説明とオリエンテーションということで
【講究する論文】(授業では [1] → [3] → [4] → [2] → [5] の順にあつかう)
[1] Chen, L., D. A. Lesmond, and J. Wei, “Corporate yield spreads and bond liquidity,” The Journal
of Finance, 62, 119-149 (2007)
[2] Gordy, M. B., “A risk-factor model foundation for ratings-based bank capital rules,” Journal of
Financial Intermediation, 12, 199-232 (2003)
[3] Gourieroux C., J. P. Laurent, and O. Scaillet, “Sensitivity analysis of Values at Risk,” Journal of Empirical Finance, 7, 225-245 (2000)
[4] Li, D., “On default correlation: a copula function approach,” Journal of Fixed Income, 9, 43-54
(2000)
[5] Merton, R. C., “On the pricing of corporate debt: the risk structure of interest rates,” The Journal of Finance, 29, 449-470 (1974)
※なお、これらの論文は事前に各自で入手してください。論文を入手することも授業の一部です。
私の調べた限りでは、ICS内部からが [4]以外はジャーナル掲載版のpdfファイルをインターネット上で入手することができます。[4]も体裁が異なるだけで、内容的にはジャーナル掲載版とほぼ同じものを入手することはできますし、論文が掲載されたジャーナルをICS図書室内で見つけることができます)
また、論文を読んでいくうえで論文ごとに専用のノートも用意するとよいでしょう。
理想的には、思考を検討するための計算用紙兼落書き用ノートと、読み取った内容を整理していく清書用ノートの2種類があるとよいと思います。
- 授業内容を大幅変更した理由について
- 授業の進め方&授業に臨むにあたって
- 成績評価について
- 授業で講究する5編の論文について
【講究する論文】(授業では [1] → [3] → [4] → [2] → [5] の順にあつかう)
[1] Chen, L., D. A. Lesmond, and J. Wei, “Corporate yield spreads and bond liquidity,” The Journal
of Finance, 62, 119-149 (2007)
[2] Gordy, M. B., “A risk-factor model foundation for ratings-based bank capital rules,” Journal of
Financial Intermediation, 12, 199-232 (2003)
[3] Gourieroux C., J. P. Laurent, and O. Scaillet, “Sensitivity analysis of Values at Risk,” Journal of Empirical Finance, 7, 225-245 (2000)
[4] Li, D., “On default correlation: a copula function approach,” Journal of Fixed Income, 9, 43-54
(2000)
[5] Merton, R. C., “On the pricing of corporate debt: the risk structure of interest rates,” The Journal of Finance, 29, 449-470 (1974)
※なお、これらの論文は事前に各自で入手してください。論文を入手することも授業の一部です。
私の調べた限りでは、ICS内部からが [4]以外はジャーナル掲載版のpdfファイルをインターネット上で入手することができます。[4]も体裁が異なるだけで、内容的にはジャーナル掲載版とほぼ同じものを入手することはできますし、論文が掲載されたジャーナルをICS図書室内で見つけることができます)
また、論文を読んでいくうえで論文ごとに専用のノートも用意するとよいでしょう。
理想的には、思考を検討するための計算用紙兼落書き用ノートと、読み取った内容を整理していく清書用ノートの2種類があるとよいと思います。
2012年4月3日火曜日
4/3(火)授業は休講です。
FRM第1回の授業は、4/10(火)に延期します。
補講を含めたスケジュール調整については追って連絡します。
(イントラにアクセスできるのであれば) 受講予定でない人も、実験目的のアンケートですので回答に参加していただいてかまいません。
補講を含めたスケジュール調整については追って連絡します。
なお、新しいイントラネットでは、
「ファイナンシャル・リスク・マネジメント(FRM)」の受講(予定)者向けのアンケートを作成しました。
これはイントラのレポート機能の使い勝手などを、出題者である中川と回答者である学生の方が確認するためのテストを主たる目的にしています。
回答内容はまったくFRMの成績に影響しません。
授業アンケートの回答は、本日4/3の21:30~翌日の4/4の12:00まで受け付けます。
(イントラにアクセスできるのであれば) 受講予定でない人も、実験目的のアンケートですので回答に参加していただいてかまいません。
レポートへのリンク: https://ics.manaba.jp/ct/course_2756_report
2012年2月16日木曜日
2012年度の「ファイナンシャル・リスク・マネジメント」について
【授業の概要】(※ 2011 年度までと大きく授業内容・形態が変わります)
金融リスク(市場リスク・信用リスク)の計量に関するいくつかの論文の講究を通じて、モデルの理論的背景(特に数学的議論)の理解を深め、実際の金融リスク・マネジメントとの距離感や実用化の方法などについて議論する。
【履修のための条件】計量ファイナンス系のM2 向け科目という位置づけだが、意欲があれば誰でも受講可能。
【授業の目的・到達目標】
金融リスク計測に関連するモデルの理論的側面について、数学的議論を通じてきちんと理解することを目指す。くわえてモデルの実証方法を理解し、部分的に論文中の手法を再現できるようにリスク計測技術の向上も目指す。さらに、専門学術雑誌に掲載された学術論文をきちんと読む姿勢を身につけることも副次的に目指す。
【授業計画】(※ 2012 年1 月段階の構想のため変更の可能性あり。詳細は4 月初めに告知予定)
1. (4/3) Guidance & Introduction : 講義全般のオリエンテーション
2-3. (4/10, 4/17) 社債スプレッドと流動性:Chen et al.(2007)
4-6. (4/24, 5/1, 5/8) VaR の感応度分析:Gourieroux et al.(2000)
7-9. (5/15, 5/22, 5/29) デフォルト相関とコピュラ:Li (2000)
10-12. (6/5, 6/12, 6/19) リスク・ファクターモデル:Gordy (2003)
13-15. (6/26, 7/3, 7/10) 構造型モデルの原点:Merton (1974)
※海外出張などにより、スケジュール変更の可能性あり
【直接扱う論文】
[1] Chen, L., D. A. Lesmond, and J. Wei, “Corporate yield spreads and bond liquidity,” The Journal
of Finance, 62, 119-149 (2007)
[2] Gordy, M. B., “A risk-factor model foundation for ratings-based bank capital rules,” Journal of
Financial Intermediation, 12, 199-232 (2003)
[3] Gourieroux C., J. P. Laurent, and O. Scaillet, “Sensitivity analysis of Values at Risk,” Journal of Empirical Finance, 7, 225-245 (2000)
[4] Li, D., “On default correlation: a copula function approach,” Journal of Fixed Income, 9, 43-54
(2000)
[5] Merton, R. C., “On the pricing of corporate debt: the risk structure of interest rates,” The Journal of Finance, 29, 449-470 (1974)
【他の授業科目との関連】「金融数理の基礎」「金融数理」「金融データ分析の基礎」「統計科学の数理」などの授業を一通り履修しており、確率論・統計学の基本的な事項を修得していることを期待する。
【成績評価の方法】平常点(小レポートや課題への取組、発言内容など)。いわゆる筆記試験は行わない
【学生へのメッセージ】予習に相当時間をかけないと授業について来られないはずです。席に座って何かを教わりたいという姿勢の人は最後まで続かないでしょう。
金融リスク(市場リスク・信用リスク)の計量に関するいくつかの論文の講究を通じて、モデルの理論的背景(特に数学的議論)の理解を深め、実際の金融リスク・マネジメントとの距離感や実用化の方法などについて議論する。
【履修のための条件】計量ファイナンス系のM2 向け科目という位置づけだが、意欲があれば誰でも受講可能。
【授業の目的・到達目標】
金融リスク計測に関連するモデルの理論的側面について、数学的議論を通じてきちんと理解することを目指す。くわえてモデルの実証方法を理解し、部分的に論文中の手法を再現できるようにリスク計測技術の向上も目指す。さらに、専門学術雑誌に掲載された学術論文をきちんと読む姿勢を身につけることも副次的に目指す。
【授業計画】(※ 2012 年1 月段階の構想のため変更の可能性あり。詳細は4 月初めに告知予定)
1. (4/3) Guidance & Introduction : 講義全般のオリエンテーション
2-3. (4/10, 4/17) 社債スプレッドと流動性:Chen et al.(2007)
4-6. (4/24, 5/1, 5/8) VaR の感応度分析:Gourieroux et al.(2000)
7-9. (5/15, 5/22, 5/29) デフォルト相関とコピュラ:Li (2000)
10-12. (6/5, 6/12, 6/19) リスク・ファクターモデル:Gordy (2003)
13-15. (6/26, 7/3, 7/10) 構造型モデルの原点:Merton (1974)
※海外出張などにより、スケジュール変更の可能性あり
【直接扱う論文】
[1] Chen, L., D. A. Lesmond, and J. Wei, “Corporate yield spreads and bond liquidity,” The Journal
of Finance, 62, 119-149 (2007)
[2] Gordy, M. B., “A risk-factor model foundation for ratings-based bank capital rules,” Journal of
Financial Intermediation, 12, 199-232 (2003)
[3] Gourieroux C., J. P. Laurent, and O. Scaillet, “Sensitivity analysis of Values at Risk,” Journal of Empirical Finance, 7, 225-245 (2000)
[4] Li, D., “On default correlation: a copula function approach,” Journal of Fixed Income, 9, 43-54
(2000)
[5] Merton, R. C., “On the pricing of corporate debt: the risk structure of interest rates,” The Journal of Finance, 29, 449-470 (1974)
【他の授業科目との関連】「金融数理の基礎」「金融数理」「金融データ分析の基礎」「統計科学の数理」などの授業を一通り履修しており、確率論・統計学の基本的な事項を修得していることを期待する。
【成績評価の方法】平常点(小レポートや課題への取組、発言内容など)。いわゆる筆記試験は行わない
【学生へのメッセージ】予習に相当時間をかけないと授業について来られないはずです。席に座って何かを教わりたいという姿勢の人は最後まで続かないでしょう。
登録:
投稿 (Atom)